Integral Applications

Instructional Focus	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Use and interpret the definite integral to solve problems in various contexts (CHA-4.A, FUN-5.A, CHA-4.B, CHA-4.D, CHA-4.E)	Can Extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving	 Do ALL of the following: Average value of a function over a given interval Accumulation of a rate of change Net change over a given interval Within various contexts Follows math practices of algebraic computation, precision and reasoning* 	 Do ALL of the following: Average value of a function over a given interval Accumulation of a rate of change Net change over a given interval 	 Do TWO of the following: Average value of a function over a given interval Accumulation of a rate of change Net change over a given interval 	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Apply definite integrals to problems involving motion (CHA-4.B, CHA-4.C, CHA-4.D, CHA-4.E)		Do ALL of the following: Displacement Total distance traveled Initial value Average value Follows math practices of algebraic computation, precision and reasoning*	Do THREE of the following: Displacement Total distance traveled Initial value Average value	Do TWO of the following: Displacement Total distance traveled Initial value Average value	
Apply definite integrals to problems involving area and volume (and arc length) (CHA-5.A, CHA-5.B, CHA-5.C, CHA-6.A)		 Do ALL of the following: Area of a region Volume by revolution Volume by cross section Perimeter of an object defined by curves Follows math practices of algebraic computation, precision and reasoning* 	 Do THREE of the following: Area of a region Volume by revolution Volume by cross section Perimeter of an object defined by curves 	 Do TWO of the following: Area of a region Volume by revolution Volume by cross section Perimeter of an object defined by curves 	
Analyze differential equations and obtain general and specific solutions (including logistic growth) (FUN-7.A, FUN-7.B, FUN-7.C, FUN-7.D, FUN-7.E, FUN-7.F, FUN-7.G FUN-7.H)		Sketch a slope field for a given differential equation and <u>Find a particular solution</u> of a differential equation Find the carrying capacity of a logistic differential equation when the diff. eq. is not given in standard form and determine when the rate of change is the greatest. Follows math practices of algebraic computation, precision and reasoning*	Sketch a slope field for a given differential equation and <u>Find a general solution</u> of a differential equation Find the carrying capacity of a logistic differential equation when the diff. eq. is not given in standard form.	Sketch a slope field for a given differential equation and <u>Separate variables</u> of a differential equation Find the carrying capacity of a logistic differential equation.	
Estimate solutions to differential equations using Euler's Method (FUN-7.C)		Estimate for y-values using Euler's method using appropriate steps. Follows math practices of algebraic computation, precision and reasoning*	Estimate for y-values using Euler's method.	Create a table to find estimates using Euler's method.	
Use advanced techniques to take the antiderivative of a function. (FUN-6.E, FUN-6.F)		Integrates using all of the following techniques: Integration by parts Trigonometric Integrals Trig Substitution* Partial Fractions Follows math practices of algebraic computation, precision and reasoning*	Integrates using two of the following techniques: Integration by parts Trigonometric Integrals Trig Substitution* Partial Fractions	Integrates using one of the following techniques: Integration by parts Trigonometric Integrals Trig Substitution* Partial Fractions	

*Math Practices for AP Calculus include:

- Algebraic processes and computations completed logically and correctly
- Attend to precision graphically, numerically and analytically
- Clearly present reasoning and justification with accurate and precise language